275 research outputs found

    Bats Use Magnetite to Detect the Earth's Magnetic Field

    Get PDF
    While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    No alignment of cattle along geomagnetic field lines found

    Full text link
    This paper presents a study of the body orientation of domestic cattle on free pastures in several European states, based on Google satellite photographs. In sum, 232 herds with 3412 individuals were evaluated. Two independent groups participated in our study and came to the same conclusion that, in contradiction to the recent findings of other researchers, no alignment of the animals and of their herds along geomagnetic field lines could be found. Several possible reasons for this discrepancy should be taken into account: poor quality of Google satellite photographs, difficulties in determining the body axis, selection of herds or animals within herds, lack of blinding in the evaluation, possible subconscious bias, and, most importantly, high sensitivity of the calculated main directions of the Rayleigh vectors to some kind of bias or to some overlooked or ignored confounder. This factor could easily have led to an unsubstantiated positive conclusion about the existence of magnetoreception.Comment: Added electronic supplement with source dat

    Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene

    Get PDF
    Author Posting. © Annual Reviews, 2007. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Environment and Resources 32 (2007): 31-66, doi:10.1146/annurev.energy.32.041706.124700.The global carbon and climate systems are closely intertwined, with biogeochemical processes responding to and driving climate variations. Over a range of geological and historical time-scales, warmer climate conditions are associated with higher atmospheric levels of CO2, an important climate-modulating greenhouse gas. The atmospheric CO2-temperature relationship reflects two dynamics, the planet’s climate sensitivity to a perturbation in atmospheric CO2 and the stability of non-atmospheric carbon reservoirs to evolving climate. Both exhibit non-linear behavior, and coupled carbon-climate interactions have the potential to introduce both stabilizing and destabilizing feedback loops into the Earth System. Here we bring together evidence from a wide range of geological, observational, experimental and modeling studies on the dominant interactions between the carbon cycle and climate. The review is organized by time-scale, spanning interannual to centennial climate variability, Holocene millennial variations and Pleistocene glacial-interglacial cycles, and million year and longer variations over the Precambrian and Phanerozoic. Our focus is on characterizing and, where possible quantifying, the emergent behavior internal to the coupled carbon-climate system as well as the responses of the system to external forcing from tectonics, orbital dynamics, catastrophic events, and anthropogenic fossil fuel emissions. While there are many unresolved uncertainties and complexity in the carbon cycle, one emergent property is clear across time scales: while CO2 can increase in the atmosphere quickly, returning to lower levels through natural processes is much slower, so the consequences of the human perturbation will far outlive the emissions that caused them.S. Doney acknowledges support from the NSF Geosciences Carbon and Water program (NSF ATM-0628582) and the WHOI W. Van Alan Clark Sr. Chair. D. Schimel acknowledges support from the NSF Biocomplexity in the Environment program (NSF EAR-0321918)

    Information storing by biomagnetites

    Full text link
    Since the discovery of the presence of biogenic magnetites in living organisms, there have been speculations on the role that these biomagnetites play in cellular processes. It seems that the formation of biomagnetite crystals is a universal phenomenon and not an exception in living cells. Many experimental facts show that features of organic and inorganic processes could be indistinguishable at nanoscale levels. Living cells are quantum "devices" rather than simple electronic devices utilizing only the charge of conduction electrons. In our opinion, due to their unusual biophysical properties, special biomagnetites must have a biological function in living cells in general and in the brain in particular. In this paper we advance a hypothesis that while biomagnetites are developed jointly with organic molecules and cellular electromagnetic fields in cells, they can record information about the Earth's magnetic vector potential of the entire flight in migratory birds.Comment: 17 pages, 3 figure

    Safety Implications of High-Field MRI: Actuation of Endogenous Magnetic Iron Oxides in the Human Body

    Get PDF
    Background: Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla) are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body.Methodology: Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles.Principal Finding and Conclusions: Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB

    Protistan Diversity in the Arctic: A Case of Paleoclimate Shaping Modern Biodiversity?

    Get PDF
    The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes.We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages.This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery
    corecore